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ABSTACT

Often. for each simulation situation, a computer run involving Monte

Carlo is expensive and time consuming. However, simulation outcomes are

usually desired for a very large number of situations. One solution to this

difficulty is, from a feasible number of runs) to develop a procedure for

estimating the simulation outcome for a large class of situations. This esti-

mation is of a regression nature. The type of regression function used should

(1) have substantial curve-fitting flexibility (2) be satisfactorily deter-

mined from an acceptable number of simulation runs (3) permit isolation of

important combinations of effects, and (4) be computationally manageable.

It is also highly desirable that (5) the regression analysis has a satis-

factory probability basis, so that the accuracy of the fit from the data can

be investigated. The linearized nonlinear regression method presented here

satisfies (l)-(4), and some nonprobabilistic curve-fitting procedures for deter-

mining a regression function are outlined. This regression method seems to also

satisfy (5) and the probability basis developed, along with some estimation re-

sults, is presented. Use of the linearized nonlinear regression method has

desirable features for optimizations.

invited paper presented at the First Joint TDIS-ORSA National Meeting,

San Francisco, California November 8-10., 1961
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UTRODUCTION

For the cases considered, a simulation model involving Monte Carlo is

programmed for application on a high-speed computer. This mathematical

model is completely specified except for the values of some constants which

will be termed inputs. Some of the inputs refer to the initial and other

side conditions. The other inputs are the values of constants that occur in

the functional form for the model. Each possible choice for the values of the

inputs represents a simulation situation.

Given the inputs, a computer run of the simulation process yields an ob-

served value for each of the outputs that is considered. These outputs re-

present the results of this random simulation. Of courses any specified func-

tion of the directly recorded outputs is also an output. For the cases con-

sidered here, all inputs and outputs are real numbers.

For a fixed set of input values. the observed values for a specified

output are a random sample from a univariate statistical population. The

properties of these statistical populations (a possibly different population

occurs for each set of input values) are the quantities of interest. Esti-

mation of the "value" of a specified output refers to estimation of some

suitable "average" property of the statistical population for this output.

Considered over a number of sets of input values, the "average" used is

a function of the inputs. In general, this function (referred to as the

"average" function) can depend on the totality of sets of input values that

receive consideration. However, use of this function to furnish "average"

values for other sets of inputs ordinarily should not result in great error

when these other sets are of an interpolation nature with respect to the sets
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on which the "average" function is based. As an aid in the development of a

suitable probability modell a special type of "average" function (a generali-

zation of the median concept) is used in this paper

The problem is to develop a satisfactory method for estimating the "average"

function for a specified output (referred to as the output) on the basis of an

acceptable number of computer ruts. Since statistical variation is involved,

this estimation falls under the general heading of regression. However, a comF-

bitation of desirable features occurs that is seldom present for regression

analyses based on data from the usual types of experimental sources. These

features include: (a) Any desired number of observed values for the output

are obtainable for any specified set of values for the inputs (b) All observed

values for the output, irrespective of the values for the inputs, are statis-

tically independent (c) There are no missing value difficulties.

For the linearized nonlinear regression method, the "average" function for

estimating the output is represented implicitly. This representation is an

equation with one side equal to a sum of unknown constants times completely

specified functions of the values of the inputs. The other side equals the

value of the (unknown) output plus a sum of unknown constants times completely

specified functions of the value of the output. Given values (estimates) for

the unknown constants, and the values of the inputs, the estimate of the corres-

ponding output is determined by solution of the resulting equation.

Condition* are imposed to assure that there is a unique solution for the

output. As is usual for regression analysis, the completely specified functions

are chosen on the basis of technical considerations and judgment. Here, however,

a poor selection can often be discovered and improved on the basis of additional

simulations.
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With suitable choice of the completely specified functions, a considerable

amount of curve~fitting flexibility can be obtained without the introduction

of very matiy unnoin constants, Since only a moderate number of constants are

to be estimated, reasonably stable estimates should be obtainable without an

excessively large number of simulation runs. The linearity of the representation

implies that important combinations of effects (specified linear functions of

the unknown constants) can be isolated without difficulty; also that most of the

computations to be performed are of a linear nature and therefore not overly

difficult.

Two types of methods are presented for determining linearized nonlinear

regression functions (that is, for estimating the unknown constants in a re-

gression function). One method does not have a probabilistic ba;sis and the

constants are determined on the basis of curve-fitting criteria. For the other

method, approximate median estimates and approximate confidence intervals are

obtained for the unknown values of the constants. The nonprobabilistic method

is easier to apply and, to some extent, its suitability can be checked by

further simulations. The probabilistic method allows direct evaluation to be

made of the effects of statistical variation on the estimates for the constants

in the regression function.

Any probability model developed shouid, from practical necessity be valid

for virtually all Monte Carlo simulations and linearized nonlinear regression

functions that might reasonably be encountered. The probability model given

in this paper has this generality of application. A further development, for

which work is now underway, consists in deriving approximate confidence intervals

for the sum of the terms which involve the inputs (for any specified set of

values for these inputs), These confidence intervals would -permit investigation
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of the over-all effect of statistical variation on the regression function for

a stated set of input values.

Consider a measure of effectivenes whose value is a function of the direct

outpuitS of the simulation Pot example, this might be the total worth of the

targets destroyed for an offense versus defentse simulation. This measure of

effectiveness is itself an output which depends on the inputs (in an unknown

fashion) and can be represented by a linearized nonlinear regression function.

Stepwise maximization (or minimization) of this output can be conveniently

accomplished by appropriate use of the regression method presented in this

paper.

It should. perhaps) be emphasized that the estimation function is only

intended for use in situations of an interpolation naturei That is, situations

where the set of values for the inputs has an interpolation position with res-

pect to the sets of values used in determining the linearized nonlinear re-

gression function.

The next section contains some discussion a statement of notation and a

brief general introduction to regression analysis. The following section

presents a general statement of the linearized nonlinear regression model,

Curve-fitting methods for determining a regression function are considered in

the next section. The next to last section contains a statement of the proba-

bility model and presents point estimates and confidence intervals for the

unknown constants in the regression function. The final section contains an

outline of the method used to optimize a measure of effectiveness.
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DISCUS SION ANiD NOTATION

In many senses) regression consists of curve-fitting in the presence of

statistical variation. Linear regression which expresses the "average" value

of the output as a linear function of the inputs (or completely specified func-

tions of the inputS) has computational advantages but restricted curve-fitting

flexibility. In many cases, poor agreement between observed values of the outa

put and their regression estimates may be due to inability of the linear func-

tional form to provide a good fit rather than a result of large statistical

variation. A basic problem is to develop a regression method that has sub-

stantial curve-fitting flexibility without substantial changes in the desirable

computational properties that occur for linear regression.

Let y represent the output while xl,...,xk represent the inputs. The data

for the i-th of n simulations is represented by

(yi;xlij, 0Xki)J ( j,. jn) .

Then, in general, a regression relation can be expressed in the form

y - *(l.. kA . #At)

where the function h is completely specified except for the values of the un-

known constants A1 j... At. That is,

Yi h(x!!,'" p ;A,'"At) + e, i .,

where the ei are random errors and, for the situations considered in this paper,

statistically independent.
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It is to be emphasized that, in general, each of the ej could have a

substantially different (unknown) probaoility distribution. Also, the use

of a regression function with a large amount of curve-fitting flexibility is

helpful in reducing the magnitude of the ei, since a part of this magnitude

is due to inability of the regression function to adequately represent the

"fixed parts" of the yi"

LinEARIZED -NONLWEAR _REGRESSION MODELS-

Let the range of possible values for y be yL -6 y YUJ where yL = -

and YU are possibilities. The approach consists in express-'-.g the re-

gression function in a transformed manner. Specifically, let

usually monotonic for yL 5 y yU be specfied functions of y while

(xl...) are specified functions of x1,..Px. The regression

function is expressed as

(1) y + A gl(y)+..eAgs(y) = Ai+Aj2g 2(xI...xk) + ... Axt)

where A!,...,A are restricted by the condition that y + .. + A 8g(y) is a
monotonic function of y for i If h(xl.*.,xk;Al,...,A t) denotes

the solution of equation (1) for y in the range yL $ y y U

y - h(xl,.,xxk;Al,.,, A)

in an alternate way to express the regression function This alterate ex-

pression is used to estimate y for given ,

The functions gs:...,g are selected on technical grounds while

are selected partially for curve-fitting generality and partially on technical
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grounds; none of gl(y),...,gs(y) is linear in y Use of y as one of the linear

terms of (1) represents a standardization; it also assures that linear regression

can occur as a special case.

The linear form of (1) with respect to Ai,...,At allows many types of speci-

fied linear combinations of A1j.. At to be isolated by the solution of linear

equations. Since y is a monotonic function of the quantity

AS+1 + As+ 2g,+ 2(x 1 ,..,, + ... + Atgt(xi,... .Xk)P

isolation of specified linear combinations of As+I0.A t are of especially

great interest.

Not all types of specified linear combinations of AlP..iA t can be iso-
lated by the straightforward procedure of solving linear equations. The values

of A A...*A are restricted by the monotonicity condition on y + Algi(y) +

+ A 8 g a(y). However, some number of A1,...,A s can be considered to have

restricted values. Any specified linear combinatton of As+! ... At and an un-

restricted subset of Ali...,A s can be isolated by the solution of linear equations.

CURVE"FITTING RESULTS

Here the problem is to obtain point estimates for AI... :At on the basis

of the l and a criterion that seems to be intuitively satisfactory

but for which no specific probability basis is established. Actually, estimation

of ; and a maximum number of unrestricted constants of the set A1,

is all that is exptcttly considered. For convenience of presentation,

Alp.,e;A r ! are considered to be restricted while the values of A r..A 8 are

unrestricted.
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T he relations that furniish the basis for the estimation are

(2) yi+Alg1 (y1)+...+A g5 (y1 ) zz A++As+2go 2(xlp.. X-i -'. .+Atgt (xli,...,x.k

for i ~ ,.,. The first step is to tombine these relations so that n new

relations are obtained which are linear in Ari.A and do not contain li.A-.

This can be accomplished in many reasodnable ways by forming n overlapping groups

of relations, where each gru -ontains r relations Ten, op ahgop

combined linear relation is determined wherein A1,..A Ar 1 are eliminated.

Let the relations resulting from these combinations be

+o X ri Ar + ...+ Ksi A s a(+)iAs+l + d.+ KtiAt,

i - lj,..,n, where the K's have determined values. Then least-squares is used

to determine estimates for A r )*..!At.. That is, the estimates are the values

such that

Z(Koi +KriAr + .. + KAs - K(4+1)iAs+I KtiAt) 2

is minimum. There are standard procedures, also computer programs, available

for handling this least-squares situation.

Given estimates for A J.00JAt, determination of suitable estimas for

Alps 0 1 Ar represents a specialized problem that depends on) gey,..g(

However,* in any given case where these functions are stric tly monotonic and r

is small,'solution of this specialized problem should not be overly difficult.
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In particular, determining a suitable estimate for AI should not be difficult

for cases where r - 2.

The estimation method outlined here is but one of many possible types.

Howeverj it does have the advantages of a reasonable intuitive basis and ease

of application.

PROBBILITY UESUTS

The output Y, has a probability distribution but the corresponding inputs

Xli,.. Xki have fixed values. The yj are independent but the shape of the

distribution of Yi is not assumed to bear any definite relation to the shape of

the distribution of yj for i j.

The key feature of the probability model, which allows useful results to

be developed for heterogeneous cases, is the method used to define what Ali.. A t

represent. That is, to specify the type of "average" function that is considered.

By some data manipulations., a few "observations" are constructed that are

statistically independent and of the form

Y(u;v) - A +A e(u; v), (u U l,,,),

where e(u;v) represents the random error. Let p(u;v) be the value of P[Y(u;v)

SA v] and define Av by the requirement that the arithmetic average of p(u;v)
v

over u is equal to -. Then an approximate median estimate can be obtained for

A on the basis of Y(l;v),...,Y(U;v), Also, confidence intervals can be ob-

tained for A that have confidence coefficients which are nontrivially bounded

from below.
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The first step consists in dividing the n relations (2) into fnutually

exclusive groups of size t (some groups may be of size t + 1). To avoid bias,

and not as a part of the underlying probability model, randomization is used

to make the subdivision into sets (so that all possible subdivisions are equally

likely). Next3 separately for each set, by solution of t linear equations in

t unknowns., a value is determined for each of A13 ...,*At. Por n reasonably large

compared to tj this furnishes a number of separate "estimates" for A- (v
-v

Nextj for each Avj its "estimates" are grouped into U classes, where each

class contains approximately the same number of "estimates" (some classes may

contain one more "estimate" than others). The grouping into classes is the same

for each Av and, to avoid bias, this grouping is determined by randomization.

The "observation" Y(u;v) is the arithmetic average of the "estimates" for A- that-v
occur in the u-th class.

The value chosen for U should not be too large and, for convenience in ob-

taining approximate median estimates, should be odd. Also U should not be too
small (say, U 5); otherwise suitable values are not available for the lower

bounds for the values of confidence coefficients.

The approximate median estimates and confidence intervals for A are basedV

on order statistics of the Y(u;v). Let

Y v[I1 -5 Yv 2) ,,5 .-,Y v [U]

be the ordered values of Y(l;v),...Y(U;v) and suppose that U is odd. Then

Y_[(U + 1) /2] is approximate median estimate of A That is.

L P(Yv[(U + 1)/2] - A v < m L,
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1 1where L <2 but is not greatly different from . Here L .438 for U 3,

.421 for U =- 5, .414 for U = 7, -410 for U -9, and = .407 for U 1 1.

These results are obtained on the basis of the material presented in ref. I.

The following relations define approximate confidence intervals for

A (v =

P(Y~1J A<Y~uJ). u2l

UU

PIC [U ]< A < Y [u2]} k <I) (

where u1 < U/2, u2 > U/2, Yv[OJ = - ®, and Y v[n + 1] . These results follow

directly from ref. i.

If n is large, the distributions of Y(l;v),...,Y(U;v) are approximately

continuous and should be at least roughly the same. Then Y[(U + 1)/2] should

be very nearly a median estimate of A and the values of the confidence co-

efficients should nearly equal the lower bound values (see ref. 2 and 3).

As for the curve-fitting cases a complication arises because Al)...

are restricted. Here too, the procedure is to first obtain estimates for a

set such as A r,... At and then consider estimation for the restricted set

A... 9 A The confidence intervals that are obtainable for each of A A

can be useful in determining the estimates for these unknown constants.

The probability model used is based on the general approach presented in

ref. 3. That is, this is a special case where the "median" is the generalized

percentage point that is considered.

OPT1IZATION USE

Here the output considered is a measure of effectiveness that depends (in

some unknown way) on x 1 j.f..xk. The problem is to determine a set of values for

xlj,..*Xk that is optimum (for example, that maximizes this output).
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As a preliminary step. the values of sjt are chosen and the functions

gl).' g t are decided upon. Then a first approximation to the measure of

effectiveness, as a function of the x's) is obtained for sets of Values that

cover a broad region in the (xl,...jXk)--space. Examination of this resulting

regression function should lead to a substantial decrease in the size of the

region in which the optimum xl... xk can be expected to lie.

Additional observed outputs are obtained for values of xlj..jxk in the

restricted region and the regression function is redetermined exclusively on

the basis of observations pertaining to this region. Examination of this second

approximation to the measure of effectiveness as a function of xlW..,xk should

yield a further decrease in the size of the region where the optimum point

should lie. Continuation of this procedure through several stages should

ordinarily furnish a good approximation to the optimizing value of xl,...,xk.
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